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Abstract 
A common  method for texture  representation  is  to 

use  the  marginal  probability  densities  over  the  out- 
puts of a set of multi-orltniation,  multi-scrde  filters 
as a description 0s the texture. We prvpose a tech- 
nique, bnsed cvz Independent  Components  Analysis, for 
choosing  the  set of filters  that  yield  the  most  infor- 
mative  marqinals,  meanily  that  the  product  over  the 
marginals  most  closely  approrirnates  the  joint y&- 
bility  density  function of the  filter  outputs.  The al- 
gorithm  is  implemented  using a steerable  filter  space. 
Experiments  involving both texture  classification clnd 
synthesis  show  th,at  compared to  Principal  Components 
Analysis,  ICA  provides  superior  performance for mod- 
eling of natural  and  synthetic  textures. 

1 Introduction 
One of the main  goals of computer vision is the com- 

pact  representation of visual  entities.  Textures,  the 
visual objech considered  in this  paper,  are best repre- 
sented by their  statistical  properties. We introduce  an 
information-theoretic  framework  that provides a  bet- 
ter  understanding of filter-based  approaches to tex- 
ture  analysis  and  leads  to a technique for improving 
the  quality of those  texture  representations  that  are 
based  on marginal  statistics over filter outputs. 

Loosely speaking,  textures  are  characterized by  two 
basic  propert,ies: homogeneity and locality of repre- 
sentation. In other  words,  the  “visual  flavour” of 
a  texture  can  be  captured by its  statistical  behav- 
ior within  a  limited size window. Suitable  statistical 
models for textures  are  stationary Markov Random 
Fields (MRF), which are  completely  characterized by 
their  joint  probability  density  function  (pdf)  within 
a suitable  neighborhood.  Estimating  and  represent- 
ing even low-dimensional  joint^ pdf’s, however, can  be 
an overwhelming task.  The size of the  representation 
grows  exponentially  with  the  model  dimension,  as  does 
the  minimum  number of samples  required to achieve 

Instituto  de  Optica, 
Consejo Super. de  Investig.  Cientificas 

Serrano 121, Madrid,  Spain 
iodpm79@pinar2.csic .e~ 

a given estimation  accuracy [8]. In  fact,  techniques 
that,  attempt  to completely  characterize  joint  distri- 
butions  either consider  very small  neighborhoods [as], 
measure  only  pairwise  dependency  [15], or use specific 
MRF models [lo], [6]. 

A different approach is based  on  the  analysis of 
feature  vectors  formed by the  output of a filter 
bank [18],[7],[19],[21]. With  a  suitable choice of the 
analysis  filters, we can  assume  that  the  feature vectors 
capture  the  local  visually  significant  texture  charac- 
ter.  In  other  words,  the  filters  map  the  image values in 
each  neighborhood  onto a “perceptually  relevant”  sub- 
space,  thereby  reducing  the  representation size while 
prrserving  structural  information. 

Barring  afew  exceptions [25],[11],[28],  typical filter- 
based algorithms  do not, estimate  the  complete  statis- 
tical  description of the  texture  features.  Instead,  they 
build  models  based  on the marginal  statistics of the 
feature  components,  usually  represented by the  chan- 
nel variances or their  histograms. For example, by 
analyzing  the  directional  characteristics of a  texture 
along  a  dense  (ideally  continuous)  set of orientations 
and  scales,  one  obtains  its  “scale/orientation  signa- 
ture”, which can  be used for classification [all ,  [27]. 

Texture  representation by mmginal  statistics is a 
simple  and  attractive  approach. To make efficient  use 
of it, though, we should  understand how  well a given 
set of marginals  represents  the  joint  statistical descrip- 
tion of a texture  feature. Zhu et  al. [31] pointed  out 
that, in  general,  one needs the  marginal  pdf’s  along ev- 
ery  possible projection  direction  to  completely  charac- 
terize  the  joint  feature vector pdf.  Thus,  one  approach 
to improving the  quality of representation is to use a 
large  number of filters,  perhaps  exploiting  steerable 
schemes  [13], [24] for computational efficiency. 

In this work we follow a different route,  and de- 
vise a. technique for finding  the  basis of a given filter 
space  which generates  the  most  informative  marginals 
for a given texture,  meaning  that  the  product over 
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the  marginal  densities  most closely approximates  the 
joint  pdf. We show by experiment>al  tests of  classifi- 
cation  and  synthesis  that by selecting  such  “optimal” 
filter basis the  quality of the  representation increases 
significantly. 

Our basis selection algorithm  is based  on  Indepen- 
dent  Component Analysis (ICA)  theory.  ICA  has been 
an  area of intense  research during  the  last  decade, 
stimulated by  problems of blind  source separation  and 
deconvolution.  ICA  can be regarded  as  a  technique for 
statistical  modeling  that proves superior  to  Principal 
Component  Analysis in the case of non-gaussian  ran- 
dom vectors. It is an established  notion that  natural 
images  do  not  behave like gaussian processes [20] [3]; 
our experiments show that ICA  provides better  mod- 
els for natural  and  synthetic  textures. 

Other filter selection techniques  have  been  proposed 
for texture  analysis,  usually based  on  energy [5] or 
class separability [12]. Perhaps closest to  our  approach 
is the entropy-based algorithm of  Zhu et  al. [31], 
which uses a greedy strategy  to  sequentially  introduce 
one filter at  a  time. 

This  paper is organized  as follows. Sectiorl 2 de- 
scribes  the  filter  spaces  that we use for texture  anal- 
ysis, and  introduces  the filter basis selection problem. 
Section 3 provides some necessary  background of ICA, 
and shows its  application  to  texture  modeling. Sec- 
tion  4  describes  texture  classification  and  synthesis 
experiments  from which we were able to assess the 
performance of ICA  modeling.  Section 5 has  the con- 
clusions. 

2 Steerable  spaces for texture analysis 
Given an  image l ( z )  and  a  set of N filters 

{ h i ( z ) } ,  we will say that  the vector f ( x )  = 
[ f i ( x )  = 1 * h l ( z ) ,  . . . , f ~ ( z )  = I * ~ N ( z ) ]  is the fea- 
ture  representation of the  image  at  point x .  We  will 
assume that  a  texture  is  completely  represented by the 
joint pdf of its  feature vector f ( x )  (which, by station- 
ariety,  is  independent of x . )  By this we mean  that 
two textures  with  the  same  joint  distribution of their 
feature vectors are  “perceptually”  indistinguishable. 

Which filters produce  meaningful  feature  represen- 
tations of textures? Several  design criteria have  been 
proposed. Basically, they  all  share  the following  char- 
acteristics:  1)  zero-DC  response, to enforce  invari- 
ance to slow-varying illumination  bias; 2) good  spa- 
tial/spectral  concentration,  to  ensure energy separa- 
tion while  preserving  locality of description.  Another 
useful property of analysis filter banks is steerability 
[13], [14] defined as follows. Let H be  the  linear  space 
spanned by the N kernels {hi ( x ) } ,  and  let be a  suit- 
able  group of domain  transformations  (e.g.,  rotations 

or  isotropic  scaling.) We will say that H is steerable 
over if for every  kernel h ( x )  in H ,  and for every 
transformation A(.)  in G I  the  “transformed” kernel 
h ~ ( z )  = h ( A ( z ) )  belongs to H .  For example,  assume 
the filter space is steerable over the  group of rotations. 
Let f ( z )  and f R ( x )  be the  feature vector  description 
of a  texture  and of the  rotated version of the  texture, 
respectively ( R  is the  rotation  matrix).  Then, f ( x )  
and f R ( R - l z )  are  related by a linear  transformation 
(a  matrix), which is a function of the  rotation angle 
only.  Steerability,  thus,  ensures  uniformity of repre- 
sentation for transformed versions of the  same tex- 
ture.  Methods  exist  to  design  exact  and  approximate 
finite  dimensional  steerable  filter  spaces over rotations 
and  isotropic  scaling  over  a  finite scale range of inter- 
est [24]. 

Joint  spatial/spectral  concentration is achieved, for 
example,  using  Gabor kernels or directional  deriva- 
tives of gaussian  kernels  [19],[2l].  Such filters effec- 
tively capture  directional  texture  attributes. If a N -  
dimensional  steerable  analysis  space is used,  the  tex- 
ture  signatures  are  completely  characterized by the 
joint  statistics of the  output of N basis  filters.  Note 
that one  can  always find a  set of basis filters which 
are  scaled/rotated versions of a prototype kernel in 
the  steerable  space. 

In  this  paper we study reduced representations 
formed by the  marginal  statistics of the  feature vec- 
tors. Let us recall that  the  marginal  density of the 
i-th  component of a  random vector z ,  p i ( z i ) ,  is the 
projection of the  joint pdf p ( z )  onto  the  i-th  axis. 
The set of marginal  statistics is represented by the 
outer  product of the  marginal  pdf’s: P ( z )  = nip i (z i ) ,  
which is equal  to p ( z )  if and  only if the  components 
of the  feature vector are  statistically  independent. In 
particular, we are  concerned  with  the selection of the 
“optimal”  basis in a  steerable filter space.  Note  that 
the choice of the  basis is irrelevant if the  joint pdf 
of the  feature vector is considered.  Indeed, if f1 and 
f 2  are  the  feature vectors at  point x ,  computed using 
two different filter bases,  then f 2  = A f i ,  where A is a 
full-rank  matrix.  Thus,  the  joint  pdf’s of the  feature 
vectors, p l ( z )  and p 2 ( z ) ,  are  related  to  one  another  as 
p z ( z )  = pl(A-’z)/(det(i l)(  [23]. This one-to-one re- 
lation, however,  holds for joint  pdf’s only. In  general, 
the  marginal  pdf’s of fi cannot be computed  from  the 
marginal  pdf’s of f 2 .  This  somewhat  paradoxical  ob- 
servation  stems  from  the  fact  that  marginal  pdf’s  are 
projections of a joint  pdf  along different directions.  A 
finite  set of marginals  does  not  carry  enough  informa- 
tion in general to allow reconstructing  all  the  other 
projections. 



Assume,  however, that a particular choice of basis 
filters  gives  statistically  independent  feature  compo- 
nents.  Then,  as  noted  above,  the  marginalscompletely 
characterize  the  joint  pdf of the  feature  vector:  from 
this  set of marginals, all the  other  marginals  can  be 
reconstructed.  The converse is not  true:  other filter 
bases will produce,  in  general,  features  with “less in- 
formative”  marginal  statistics. 

Unfortunately, only  very few textures  can  be  repre- 
sented by independent  component  features [3]. Still, 
it is  almost always the case that  some  filter bases  pro- 
duce  “more  informative”  marginals  than  others.  This 
intuitive  notion  can  be  made  more  rigorous  using  the 
theory of Independent  Components  Analysis  (ICA); 
ICA also leads to  an  algorithm for selecting  an  ”opti- 
mal”  filter  basis. 

3 Independent  Component  Analysis 
In  this  section we report  some  results of Indepen- 

dent  Component  Analysis  theory  that  are  instrurnen- 
tal  to  the development of the  texture classification and 
synthesis  algorithms discussed  in later  sections. We 
refer the reader to  the excellent tutorial of Cardoso [4] 
for a general  overview of the  theory. 

We first introduce  the  ICA  problem  as  a  statistical 
approximation  tool,  and  then briefly outline Comon’s 
ICA  algorithm, which we have adopted  in our experi- 
ments. We also present  a  simple  case study  that shows 
the effectiveness of ICA  modeling  for  texture  analysis 
in  a  steerable  space. 
3.1 Problem formulation 

The  theory of Independent  Component Analysis is 
traditionally  associated  with  the  Blind Source  Sepa- 
ration (BSS) problem.  In  its  simplest  formulation, 
the BSS problem  assumes that N independent causes 
(random  variables) have  been  linearly  combined by a 
full  rank matrix A to produce N observed  variables. 
The goal is to  identify  the  mixing  matrix  from  the ob- 
servations, possibly  using  prior information  about  the 
statistics of the  causes if available. 

ICA, however, may also be  regarded  as  a  general 
estimation  method [9], without  explicit  reference to 
the BSS model. If z is a  random vector  with joint 
pdf p ( z )  and  full-rank  covariance  matrix’,  ICA  seeks 
a full rank  matrix A such that  the pdf of the vector 
y = A z  is “best represented’’ by the  outer  product 
of its  marginal  pdf’s.  The  quality of the  separable 
approximation is measured by the contrast, which is a 
deterministic  function of a joint  pdf. Let e ( z )  be  the 
“model  error”, defined as  the difference between the 

‘If the  covariance  matrix V is not full rank, we may consider 
the  projection of z onto the range  space of V [9]. 

logarithm of the  density p ( z )  and  the log-likelihood of 
the  separable  model: 

where p i ( z i )  are  the  marginal  pdf’s of the  components 
of z .  The  contrast [9] of p ( z )  is  defined as  the expec- 
tation of the  model  error e@),  which is equal to  the 
Kullback-Leibler  (KL)  divergence  between p ( z )  and 
the  separable  model  pdf 

= H i ( Z i )  - 
i 

where I f ( . )  represents the differential  entropy of its 
argument: H ( z )  = - s-”, p ( z )  logp(z)  (terms H i ( z i )  
are called marginal entropies of 2 . )  This  contrast  takes 
also the  name of mutual  information of z ,  and being a 
KL divergence it is  always  positive  (it  vanishes if and 
only if z has  independent  components).  Intuitively, 
the  mutual  information  tells us how much we lose in 
terms of average information if  we neglect to consider 
the  statistical  dependence  among  the  components of 

Other  contrast  functions  have been  proposed for 
ICA. For example, if the  distributions g i ( z i )  = s-, z ,  p i  ( i ) d i  of the original  independent  components 
in  a BSS model  are  known, we may define the “info- 
max”  contrast [l] of the vector z as - H ( g ( z ) ) ,  where 
g ( z )  = [ s l ( z l ) ,  . . . , g ~ ( z ~ ) ] .  However, in the case of 
texture  descriptors we don’t know the  distributions 
g i ( z i ) ,  and  mutual  information is a more  appropriate 
criterion.  Thus, we define the  ICA  problem as follows: 

ICA problem: find a  full-rank matrix A 
such that y = A z  has  minimal  mutual infor- 
mation. 

2 .  

Note that  the  solution  to  the  ICA  problem is not 
unique: if A minimizes the  mutual  information of A z ,  
so do  all  matrices  obtained by permuting  the rows of 
A or by pre-multiplying A by a  diagonal  matrix. 

If z is jointly  gaussian,  its  mutual  information is 
null if and  only if its  covariance  matrix is diagonal. 
Principal  Component  Analysis  (PCA, also known as 
Karhunen-Lotve  transform)  is  a  technique  to diago- 
nalize a vector  covariance by an  orthonormal  matrix, 
and  therefore solves the  ICA  problem for gaussian vec- 
tors. In the  general  non-gaussian  case,  however,  diag- 
onal  covariance is not sufficient to ensure  the  mini- 
mal  mutual  information  condition;  hence,  more work 
is needed. 



It can be shown [9] that, if z has  been "pre- 
whitened" to  unit covariance (by  PCA followed  by 
axis  rescaling), the ICA  problem is solved by an or- 
thonormal  linear  transformation  that minimizes the 
sum of the  marginal  entropies of the  transformed vec- 
tor.  This  fact  has  a nice counterpart in the  context of 
BSS. Since the  gaussian  distribution  has  the  highest 
entropy for a given  variance, we may  argue  that  the 
demixing matrix is the  one  that  produces  marginals 
as "far from  gaussian"  as  possible. This observation 
agrees  with intuition:  indeed,  as suggested by the cen- 
tral  limit  theorem,  linear  mixing of independent causes 
produces  gaussian-like  distributions. 
3.2 Comon's  ICA algorithm 

ICA  algorithms  try  to  minimize  the  contrast of 
a vector without  explicitly  computing  its  joint  pdf. 
Comon [9] proposed an efficient technique  based  on 
higher-order statistics.  In  fact,  Cornon's  algorithm 
minimizes a different contrast  than  mutual  informa- 
tion;  the  relation between the two contrast  functions 
can  be  highlighted  using  Edgeworth  functional ex- 
pansions [17]. An intuitive  justification of higher- 
order  methods is based on the  fact  that  all  the cross- 
cumulants of an  independent  component vector are 
null [17]. Thus,  one  may  try  to  minimize  mutual  in- 
formation by actually  minimizing  the  n-th  order de- 
pendence among  the vector components. For exam- 
ple,  Comon's  technique finds an  orthonormal  matrix 
A that minimizes the  sum of the  squared  fourth-order 
cross-cumulants of y = A z ,  provided that z has  been 
pre-whitened. It can  be  shown that  this is equivalent 
to maximizing  the  sum of the  squared  marginal  kur- 
tosis  (fourth-order c u m u h t s )  of y. 

It is a well known fact  that  gaussian  distributions 
have  zero  kurtosis [17]: Comon's  algorithm  does  push 
the vector components away from  gaussianity. Lep- 
tokurtic, heavy tailed  exponential-like  distributions 
are  characteristic of "sparse  codes" [22], and  are of- 
ten used to  model  the  output of wavelet filter banks 
for image  coding [20]. Platykurtic  distributions  are 
also often  observed in texture  analysis. 

Cornon's  design  algorithm is based  on  Jacobi  it- 
erations.  Its  complexity is 0(N4) (including pre- 
whitening,)  and  it  always converges to a (possibly lo- 
cal)  minimum of the  contrast.  Due  to  these  desirable 
properties, we have selected Comon's  technique for our 
experiments. 
3.3 A case study 

In  this section we present a simple  example  that 
shows the effect#iveness of ICA-based  modeling for tex- 
ture  analysis.  The two textures of Figure 1 (a),(b)  are 
analyzed in the  steerable  space  spanned by the two 

(0" - 90") filters of Figure 1 (c) ,(d) (upper  row). Tex- 
ture  A is a  mosaic of patches filled at  random  with 
either  a  constant  signal,  horizontal or vertical sinu- 
soidal  gratings, or the  sum thereof.  Texture  B is a 
mosaic of patches filled with  either  horizontal or  verti- 
cal sinusoidal  gratings. The 0" (90") filter  removes the 
horizontal  (vertical)  grating  component  completely. 

Our  goal is to find two  filters  in  the  steerable 
space that best  describe  each  texture by means of 
the  marginal  statistics of their  outputs.  Figure 1 
(c),(d) (lower  row) show the  filtered versions of the 
two  textures using the 0" - 90" filters.  Figure 1 (e),(f) 
show the  joint  pdf's of the filter outputs,  measured 
by a Parzen window estimator. In both cases the 
two  channels  are  uncorrelated  with  identical  variance 
(as proved by the  axial  symmetries of their  pdf's.) 
However,  only the  channels of Texture  A  are  statisti- 
cally independent.  Thus,  the  outer  product of their 
marginal  densities  reproduces  the  joint pdf of Tex- 
ture A exactly,  as shown in  Figure 1 (g).  In  the case of 
Texture B, though,  the  separable  model yields a very 
poor  approximation of the  joint  pdf  (compare  Figure 1 
(h)  and (f)). As a  matter of fact,  the  marginal  pdf's 
of the 0" - 90" channels of Texture  B  and  Texture  A 
are  identical: based  on  such marginal  descriptions,  the 
two  textures look the  same!  Note also that  PCA can- 
not  help us finding  better  bases, since the  channels of 
both  textures  are  already  uncorrelated. 

If we run  the  ICA  algorithm  separately  on each tex- 
ture  (by  analyzing  the  output of the two  filters) we 
find that  the 0" - 90" kernels are indeed the  correct 
choice for Texture A,  while the 45" - 135" kernels of 
Figure 1 (i)  (upper  row),  obtained by  multiplying  the 
outputs of the 0" - 90" filters by a 45" rotation  matrix, 
are  more  appropriate for Texture  B.  Figure 1 (j) shows 
the  outer  product of the  corresponding  marginal  pdf's, 
after  rotation back to  the original 0" - 90" space.  By 
comparing  Figure 1 (f) ,  (h)  and (j) it is clear that ICA 
has  dramatically  increased  the  quality of the  separable 
approximation. 

4 Experimental tests 

4.1 Supervised classification 
In  this  section we use ICA pdf  modeling in a  test 

of supervised  texture  discrimination. For the  sake of 
simplicity, we perform  training  and classification on 
the  same  data  set,  formed by the I< = 8 textures 
of Figure 2 (chosen from  the  MIT VisTex database). 
Each texture is modeled by the  marginal  pdf's over the 
selected  channels in a fixed steerable  space,  together 
with  the  corresponding  ICA  matrix.  The  marginal 



Figure 1: A case study (see text.)  (a),(b):  Textures 
A  and  B. (c) ,(d):  The 0’ - 90’ kernels (upper  row), 
and  the filtered versions of the two textures (lower 
row.) (e),(f): The  joint  channel  pdf’s of the two  tex- 
tures.  (g),(h):  The  separable  approximations of the 
joint  pdf’s using the 0”-90” filters.  (i):  The 45’-135’ 
kernels (upper  row),  and  the filtered version of texture 
B  (lower  row.) (j) The  separable  approximation of the 
joint pdf of texture B using the 45’ - 135’ filters. 

densities  are  estimated  and  represented by 50-bins his- 
tograms. 

An image  formed by the mosaic of all  textures is 
classified pixel-wise  using a Bayesian  technique [a]. A 
simple  heuristic  iterative  procedure,  inspired by the 
“Perceptually  Organized  Expectation  Maximization” 
algorithm of Weiss and Adelson [30], estimates pos- 
terior class probabilities  from  the  conditional likeli- 
hoods, enforcing  local spatial coherence. The experi- 
ment proceeds as follows: 

0 Training: for each texture  model, 
1.  filter  the  training  image  with  a fixed filter 

bank; 
2. compute  the  ICA  matrix  from  the  output of 

the  filters; 
3 .  multiply  the  output  vectors by the  ICA  ma- 

trix  and  compute  the  channel  histograms. 

Classification: apply  the fixed filter bank  to  the 
test  image. For  each texture  model, 

1. multiply  the  filter  output  vectors by the 
model  ICA  matrix,  and use the corre- 
sponding  channel  histograms  to  compute  the 
marginal  likelihoods; 

2. the likelihood of each pixel given the  model 
is equal  to  the  product of the  marginal like- 
lihoods,  times  the  absolute value of the de- 
terminant of the  ICA  matrix. 

Compute  the  posterior class probabilities  and per- 
form pixel-wise  Bayesian  classification. 

For our  experiment we have  chosen  a steerable  pyra- 
mid  filter  bank [29] with  just two orientations  and 
three scales ( N  = 6  filters  overall).  For  each  train- 
ing  texture (size 256 x 256 pixels),  Comon’s  Matlab 
implementation of ICA  required 27 seconds of compu- 
tation  time on a Power  Macintosh G3 266 MHz. The 
results,  in  terms of percentage of correctly classified 
pixels for each texture,  are shown by the solid line 
plot of figure 2. If PCA is used instead of ICA, we 
obtain  the  correct classification rates shown by dot- 
dashed  line;  the classification performances of the sys- 
tem  without  transformation  (i.e.,  using  the  original 
filters)  are  shown by the  dotted  line.  ICA pdf  model- 
ing  consistently yields the  highest  correct classification 
rates. 

We have  observed that  the performance  gain  pro- 
vided by PCA  and  ICA  modeling  relative  to  the norni- 
nal  feature vector representation decreases if the  num- 
ber of orientations  in  the  steerable filter bank is in- 
creased. This  should  not  come as a  surprise:  many 
marginal  statistics  can  provide sufficient information 
even if they  are  not  statistically  independent; however, 
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Figure 2: Supervised  classification  test (see text).  The 
system is trained  and  tested  on  the  eight  textures 
shown  above. The plots  represent  the  percentage of 
correct classification for each texture. Solid  line: us- 
ing  ICA  transformation.  Dot-dashed  line: using PCA 
transformation.  Dotted  line:  without  transformation. 

the benefit comes at  the price of increased  representa- 
tion size. 
4.2 Texture synthesis 

Synthesis-by-analysis  algorithms [16],[26],[31],[28] 
create new textures which  “look like” a given proto- 
type.  This is equivalent  to  sampling a random process 
whose statistical  description  has been estimated  from 
a given sample. 

A simple  and effective synthesis  technique  has  been 
proposed by Heeger and Bergen [16]. First,  the pro- 
totype  texture is analyzed by a  filter  bank  which  in- 
cludes  the  “identity”  filter,  and  the  marginal  channel 
histograms  are  recorded.  Then, a random  image  is 
generated,  and  its  channel  histograms  (computed by 
the  same filter bank)  are  iteratively  adjusted  to  match 
those of the  prototype  texture.  The  algorithm  usually 
converges to  a  texture  that  has  the  same  channel his- 
tograms  as  the  prototype:  the two textures  are  there- 
fore identical  on  the  grounds of marginal  statistical 
description. 

We have adopted such an  algorithm  as  a  testbed for 
our  experiments because it  represents  the  ideal  “Tur- 
ing  test”  to  validate  texture  models based  on marginal 
channel  statistics.  Our  only  addition  to Heeger and 
Bergen’s  model  is the  multiplication of the channel 
vectors at  the  output of the filter bank by the  ICA 
matrix  computed for the  prototype  texture,  as in the 
scheme of section 4.1. After the  channel  histograms 
have  been adjusted  to  match  those of the  prototype 

texture,  the  channel  vectors  are  multiplied by the in- 
verse of t,he ICA  matrix.  Note  that  the presence of 
the  ICA  matrix  requires  that all the  channels  be kept 
to  the  same  sampling  rate. 

Heeger and  Bergen use steerable  pyramid  analysis 
filter banks [29], and  synthesize  samples  that success- 
fully reproduce  some  unstructured  characteristics of 
the  prototype  texture.  Such  simple  marginal  statistics 
modeling,  though,  fails to  capture  more  complex  spa- 
tial  structures, such as  elongated  patterns. A simple 
way to  boost  t8he  performance of Heeger and Bergen’s 
scheme is to enrich  the  filter  space  with  the shifted 
versions of the  filters.  In  other  words, for each fil- 
ter h ( z )  we add  the  filters h”(z) = h ( z  + n)  with 
n belonging to  a suitable  neighborhood of the  origin. 
The  feature  representation  thus “looks around” over 
a  larger  neighborhood of each point.  This new infor- 
mation comes at  no  cost:  the  output of filter h”(z) 
at point $0 is equal to  the  output of filter h(n)  at 
point 2 0  + n. Shifted  filters,  though,  are useless if the 
marginals  statistical  description  is  built  directly  from 
their  output: by stationariety,  the  marginal pdf of a fil- 
ter  output  does  not  change if the  filter is shifted.  The 
contribution of the  shifted  filters becomes  relevant if 
a different basis of the  steerable  space  is  chosen,  that 
is, if the  output of the  filters is multiplied by the  ICA 
matrix. 

We show  in figures 3 and 4 examples of synthesis 
from  the  prototype  textures “Crosses  on  clouds” and 
“Squares”. For the “Crosses on clouds” texture we 
have  used a  steerable  pyramid  filter  bank which com- 
prised both  odd-symmetric  and  even-symmetric ker- 
nels at two orientations  and  four scales (overall N = 16 
filters). For the  “Squares”  texture we have  used odd- 
symmetric kernels at two orientations  and  three  scales, 
shifted over  five different positions  (overall N = 30 
filters).  These  prototype  textures are highly  non- 
gaussian, which  makes PCA modeling  inadequate (see 
figure 3(c)  and  4(c)).  ICA  modeling proves  superior in 
both cases.  In  particular, for the “Crosses on clouds” 
texture,  ICA  does a good job  at  separating  the low- 
pass,  isotropic  components  (the  “clouds”)  from  the 
line-shaped,  oriented  ones  (the  “crosses”.) In the case 
of the  “Squares”  texture,  ICA is able  to  extract  the lo- 
cal structure by correctly  combining  the  shifted  filters 
outputs. 

5 Conclusions 
We have  presented an  algorithm  that chooses the 

basis filters in a steerable  space in such a way as  to 
yield the  most  informative  marginals for texture repre- 
sentation.  The  method  is  based  on  the  minimization of 
the  mutual channel  information  via  Independent  Com- 
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Figure 3: Examples of texture  synthesis.  (a)  The pro- 
totype  texture “Crosses  on  clouds” is synthesized us- 
ing Heeger and Bergen’s  technique (b) with  no  channel 
transformation , (c)  with  PCA  transformation  and  (d) 
with  ICA  transformation. 

Figure 4: Examples of texture  synthesis for the pro- 
totype  texture  “Squares” (see caption of figure (3) ) .  

ponent  Analysis. The  experimental  results show the 
superiority of ICA  modeling  with  respect to  PCA for 
natural  and  synthetic  textures  and  small  dimensional 
filter spaces. 

An interesting  open  problem, which we are  cur- 
rently  investigating, is subspace selection based  on 
information-theoretic  criteria. We expect that by 
choosing a small  number of highly  informative  chan- 
nels,  one  may  obtain  reduced size representations  that 
maintain good discrimination  properties. 
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